SUCESO SEGURO Y SUCESO IMPOSIBLE

De entre los sucesos que podemos considerar al realizar un experimento aleatorio, hay algunos que poseen características especiales.

Vamos a estudiar estos sucesos tomando como ejemplo el experimento que consiste en lanzar un dado.

Tipo de suceso	Ejemplo	
Llamamos suceso seguro al que contiene todos los resultados posibles del experimento. Este suceso se cumple siempre y coincide con el espacio muestral Ω .	El suceso A: Sacar un número menor o igual que seis está formado por todos los resultados posibles del experimento: $A = \{1,2,3,4,5,6\}$ Este suceso se verifica siempre.	
Llamamos suceso imposible al subconjunto de Ω que no contiene ningún resultado posible del experimento. Este suceso no se cumple nunca y coincide con el conjunto vacío \emptyset .	nen- gún resultado posible del experimento:	

OPERACIONES CON EVENTOS

Hemos visto que los diferentes sucesos asociados con un experimento aleatorio son subconjuntos del espacio muestral Ω .

Por tanto, podemos realizar con ellos las operaciones habituales con conjuntos.

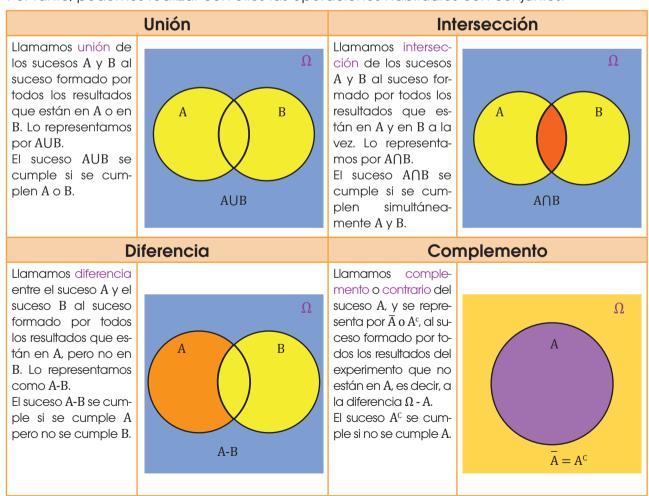


Tabla 1.

PROPIEDADES DE LAS OPERACIONES CON SUCESOS

Podemos demostrar que las operaciones anteriores cumplen las propiedades de la siguiente tabla.

Conmutativa	$A \cup B = B \cup A$	$A \cap B = B \cap A$
Asociativa	$(A \cup B) \cup C = A \cup (B \cup C)$	$(A \cap B) \cap C = A \cap (B \cap C)$
Idempotente	$A \cup A = A$	$A\cap A=A$
Absorsión	$A \cup (A \cap B) = A$	$A \cap (A \cup B) = A$
Distributiva	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
Identidad	$A \cup \emptyset = A$	$A\cap\Omega=A$
Involución	$A \cup \underline{A} = \Omega$	$A \cap \underline{A} = \emptyset$
Complementación	$ar{ar{A}} = A$	
Leyes de	$\overline{A \cup B} = \overline{B} \cap \overline{A}$	$\overline{A \cap B} = \overline{B} \cup \overline{A}$
De Morgan	$(A \cup B)^c = B^c \cap A^c$	$(A \cap B)^c = B^c \cup A^c$

■ Tabla 3.

Ejemplo 2

Tomemos una carta de una baraja inglesa y observemos su palo. Efectuemos las siguientes operaciones con los sucesos P: sacar corazones, Q: no sacar espadas y R: no sacar ni diamantes ni espadas.

a.
$$\overline{\overline{R}}$$

Si designamos por D (diamantes), C (corazones), E (espadas) y T (trebol) los cuatro palos de la baraja, tenemos que:

$$\Omega = \{D, C, E, T\}$$

Así pues:

$$P = \{C\}; Q = \{D, C, T\}; R = \{C, T\}$$

De esta manera:

a.
$$\overline{R} = \Omega - R = \{D, C, E, T\} - \{C, T\} = \{D, E\}$$

b.
$$R \cup Q = \{C, T\} \cup \{D, C, T\} = \{D, C, T\}$$

c.
$$R \cap Q = \{C, T\} \cap \{D, C, T\} = \{C, T\}$$

d.
$$Q - P = \{D, C, T\} - \{C\} = \{D, T\}$$

Ejemplo 3

Lanzemos un dado y observemos su puntuación. Comprobemos que se cumplen las leyes de De Morgan con los sucesos A: sacar 2 o 3 y B: sacar más de 4.

Expresamos los sucesos A, Ā, B y B̄ por extensión:

$$A = \{2, 3\}; \overline{A} = \{1, 4, 5, 6\}$$

$$\Omega$$
= {1, 2, 3, 4, 5, 6}

$$B = \{5, 6\} ; \overline{B} = \{1, 2, 3, 4\}$$

Así pues, para la primera ley de De Morgan:

$$\overline{AUB} = \Omega - (AUB) = \Omega - (\{2, 3\} \cup \{5, 6\}) = \{1, 4\}$$

$$\overline{A} \cap \overline{B} = \{1, 4, 5, 6\} \cap \{1, 2, 3, 4\} = \{1, 4\}$$

En efecto:
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

De igual forma, para la segunda ley de De Morgan:

$$\overline{A \cap B} = \Omega \cdot (A \cap B) = \Omega \cdot (\{2, 3\} \cap \{5, 6\}) = \Omega \cdot \emptyset = \Omega$$

$$\overline{A}U\overline{B} = \{1, 4, 5, 6\} \cup \{1, 2, 3, 4\} = \{1, 2, 3, 4, 5, 6\} = \Omega$$

En efecto:
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

Llamamos conjunto potencia al conjunto formado por todos los sucesos asociados con un experimento. Lo representaremos por $P(\Omega)$.

2. De una bolsa donde hay veinte bolas numeradas del 1 al 20, extraemos una. Comprueba que se cumplen las propiedades asociativa y distributiva con los sucesos A: obtener número par, B: obtener número primo y C: obtener un número tal que la suma de sus cifras sea 5.